
CHAPTER2

Represent the state of the game

2.1 Data representation

2.1.1 Initial design

The goal at this stage of the project is to find the best way to represent all the
useful information for the game. Although it may seem easy, this step is essential
and has consequences on the whole project, until the last stages. Therefore, it is
important to devote considerable energy to it - while keeping in mind that it is
never possible to plan everything.

Before starting computer concepts, it is strongly recommended to prepare this work
on paper, by listing useful information for the game. It begins with the summary
description of these, and then, while the list becomes large, it is relevant to start
to make groupings.

This work can be done on a paper sheet if you are one or two, or on a white-
board, if you are three to five. Beyond that, you will need more advanced project
management techniques (not described in this book).



30 Learn Design Patterns with Game Programming

2.1.2 Types of information

The types of information required to represent the data are very numerous. Among
these, it is often necessary to choose a way to represent the position of an element
in the world. In the case of the Pacman game, it boils down to 2D coordinates (x,
y). A concept of the relative position may also be needed, as in the Pacman game,
where a moving character can be between two boxes. For games whose world is
in 3D, a third coordinate is required, for example (x, y, z). To this can be added
notions of places, such as level and/or floor in a building. It is also necessary to
ask the question of the superposition of the elements. In some cases, elements can
have similar coordinates, but in a certain order. For example, in strategy games,
units can stack on the same cell, like in Civilization. In these cases, we need a
position attribute in the stack.

There are then a large number of properties that can qualify an element or a group
of elements. For example, in role-playing games, there are notions of life or mana.
These attributes often have minimum and maximum values, which this stage of
design must define. It is also necessary to specify if it is possible to have duplicates
of properties and/or elements: this will have an important impact on the computer
design that follows. There can also be notions of the lifetime of elements: these are
most often represented by a time counter, like the “super” mode time for Pacman.

2.1.3 Example with the game Pacman

This section provides an example of a description of the elements of the Pacman
game, in a simplified version.

A set of static elements (the world) and a set of moving elements (Pacman and
ghosts) forms the game state. All elements have the following properties:

• Type of element
• Coordinates (x, y) in the grid

2.1.3.1 Static elements

A grid of elements called “boxes” or “cells” shapes the world. The size of this grid
is set at the start of the level. The types of cells are:

Wall cells. They are impassable elements for moving elements. The possible
textures are:

• Upper left corner, upper right corner, lower left corner, lower right corner
• Horizontal, vertical



Chapter 2. Represent the state of the game 31

The choice of the texture is purely aesthetic and does not influence the evolution
of the game.

Space cells. The moving elements can cross space cells. The space types are:

• The empty spaces
• The gum spaces
• The super gum spaces
• The cemetery spaces, which serve to define the places where ghosts appear at
the beginning of the game, but also places where those devoured by Pacman
can resume a normal form.

• The start spaces, which define a possible initial position for Pacman.

2.1.3.2 Mobile elements

Moving elements have a direction (none, left, right, up or down), a speed, and
a position. A position at zero means that the element is exactly on the cell. For
the other values, it means that it is between two cells (the current one and the
one defined by the direction of the element). When the position is equal to the
speed, then the element moves to the next cell. Thus, the greater the numerical
value of speed, the more the character will have a slow movement. Thanks to these
mechanics, character movements are always synchronized with a global clock.

Pacman moving element. The player controls this element, thanks to the direc-
tion property. Pacman also has a “super counter”, which is used to determine the
remaining time before returning to a normal state. Finally, we use a property that
we will name “status”, which can take the following values:

• “Normal” status: the most common case where Pacman can move around the
maze, and avoid ghosts

• “Super” status: Pacman can eat ghosts
• “Dead” status: A ghost caught Pacman

Ghost moving elements. The direction property also controls these elements,
whether it comes from a human or an AI. These elements have two particular
properties. The first one is “color”, which is purely aesthetic. The only rule
regarding this color is that it is unique for each ghost. The second particular
property is the “status”, which can take the following values:

• “Normal” status: the most common case where the ghost can kill Pacman.
• “Flee” status: where the ghost can be killed by “super” Pacman.
• “Eyes” status: where the ghost has been devoured by “super” Pacman.

⇒ Note: This example is intentionally incomplete: it is rare to imagine every
possible case from conception. These definitions must be enhanced during the
project.



32 Learn Design Patterns with Game Programming

2.1.4 Video Game Development: Specifications

It is now time to start the design of the game you have chosen:
→ Put on the paper the list of items you will need to represent a state of your game.
Note that it is not necessary to define the rules of the game for the moment - even
if you can start to think about it!

2.2 Basic information

Once the information is on the paper, one can begin to think about how to represent
it from a computer point of view. At this stage, there is no programming yet, only
design work on the structure of the representation.

2.2.1 Classes

Each application has a specific data structure, and it is not possible to offer a single
recipe for all cases. However, we can highlight several common tools. The first of
these tools is the representation of basic information, such as the users of a system
or the different types of characters in a game. In this scope, the naive approach
proposes to make representations independent of each other. With this approach,
classes can represent one or more types of data.
⇒ Note: There are several ways to design these classes. The first and most
natural is to draw them on a paper sheet. This old support may seem outdated
when discovering software design; it is not the case! It remains infinitely faster
to scribble a few classes and their relationships on paper, rather than consider
alternatives. Do not hesitate to use it, and even more when working in a group.
Once your essay begins to converge, it becomes interesting to use UML software.
These allow you to represent your classes in a very clean way, but also to generate
some of the corresponding source code.



Chapter 2. Represent the state of the game 33

2.2.1.1 Create a new class diagram with Netbeans / EasyUML

→ Click on the menu File - New project . . . , then choose the category UML and
the type of project UML Diagrams Project:

→ Click the Next button, and then enter the project name in the Project Name
box and its folder in the Project Location box:

→ Click the Finish button.



34 Learn Design Patterns with Game Programming

After the UML project creation, it is possible to add class diagrams.
→ Right-click the Class Diagrams folder in the UML project. → This brings up the
context menu: choose New - Other . . . :

→ Choose the UML category and the Class Diagram file type:

→ Click the Next button



Chapter 2. Represent the state of the game 35

→ Define the diagram name in the Name box:

→ Click Finish



36 Learn Design Patterns with Game Programming

→ Open the class diagram by double-clicking on its file in the Project window.
It brings up several windows:

• The central window is the diagram window (empty in this example).

• The window at the top right is the tools palette to form the diagram.

• The window at the bottom right contains the properties of the currently
selected element (if any, none in this example).

• The window at the bottom left provides an overview of the diagram.

2.2.1.2 Adding a class

Creating classes with EasyUML is very simple, for example, to create a Pacman
class with two integer attributes x and y:

→ Click the Class tool from the palette to the diagram;

→ Double-click on the title of the new class, then enter “Pacman”;

→ Double-click in the box under the class title (you should see double-click to
add field), then enter “int x”;


