
CHAPTER4

Rules engine

4.1 General approach

4.1.1 Presentation

As quickly presented in Chapter 1, the general approach followed in this book is a
modified version of the Model-View-Controller (MVC) approach:



204 Learn Design Patterns with Game Programming

As a model, we find the state of the game, presented in Chapter 2. Unlike the MVC
approach, the game state in the proposed approach is only a storage location: the
only available modifications are basic setters. In the example of the Pacman game
presented so far, the attributes of the PlayGameMode class form the game state.
For example, the level attribute contains the cells of the world. As a view, we find
the user interface presented in Chapter 3. Finally, as a controller, we find the rules
engine, embodied by the update() method in the Pacman game example. Unlike
the MVC approach, it is the rule engine that validates changes in the state of the
game.
Concerning the interaction between these three actors, the major difference lies
in the passive nature of the game state. When the user acts, such as pressing a
key or selecting an item in a menu, the user interface produces a command, such
as “move the character to the right.” This command is sent to the rules engine,
which deduces the actions needed to modify the state, for example, to change the
character’s x coordinates. Besides, the rule engine triggers the sending of events
indicating state changes - it is not the state that transparently indicates that it has
changed. When the user interface receives the event, it modifies its rendering data
accordingly, and for example, it modifies the x coordinate of the character’s sprite.

4.1.2 Motivation

This approach is the result of constraints specific to video games, and to any
application whose display requires the same constraints. Indeed, the user interface,
on the one hand, and the state of the game and the game engine on the other,
evolve in two “parallel” universes:
• The user interface must provide high-speed rendering, typically at 60 frames
per second. Aesthetics motivate this constraint, on the contrary to office
applications that usually ignore it;

• The state of the game evolves at a slower speed, regularly or irregularly.
The first reason for this constraint is simply that not all screens work at the
same refresh rate. It would be strange to watch a game whose evolution is
faster on a screen at 144Hz than on a screen at 60Hz. It is also motivated by
aspects of computational resources, especially when one wishes to include
advanced artificial intelligence. Finally, the management of the multiplayer
game requires it, and networks can not operate at frequencies as high as the
refresh of a screen.

Tomanage these aspects, onemust be able to operate the two entities independently.
Communication should take place only briefly at key moments in the game cycle.
Between these moments, everyone must evolve independently:
• When the rules engine changes the game state, the user interface should not
be interrupted. It must be able to offer a consistent display until the state of
the game is available for viewing. For example, in the GUI facade presented



Chapter 4. Rules engine 205

earlier, that’s why layers have their list of sprites. They are disconnected from
the state of the game and can be drawn without consulting the data of the
game state.

• When the user interface produces a command, for example, as a result of a
pressed key, it can not be consumed if the rules engine is changing the state.
We must find solutions to postpone this consumption.

The purpose of this chapter is to present different approaches and associated
design patterns to meet these requirements. Section 2 focuses on the separation
between game state and rendering in the user interface. Section 3 presents the
rules engine and its interaction with the other two actors. Finally, section 4 presents
several features that can be easily added thanks to the proposed approach. Indeed,
if it meets the constraints presented above, it also offers other very interesting
benefits.
⇒ Note: The general approach followed in this book is not the only solution to
every conceivable problem. It is perfectly suited to a large number of cases,
partially answers the problems raised by others, and is irrelevant in some cases.
Once again, the primary goal of this book is to train the mind in software design
techniques, primarily using design patterns. The example of this approach has
many pedagogical interests and helps you to create new approaches. For the video
game developed while reading this book, beginners are invited to reproduce it,
and the most experienced should use it as an inspiration to design their solution.



206 Learn Design Patterns with Game Programming

4.2 Synchronization between state and user inter-
face

The purpose of this section is to synchronize the game state data, as designed in
Chapter 2, with the user interface presented in Chapter 3.
Before starting, here is a summary of the elements designed so far, with a little
reorganization. First, the main classes are kept in the main package, and separated
from the menu classes:



Chapter 4. Rules engine 207

All menu classes are placed in the menu package:

The facade for the user interface is kept, and placed in the gui package:

The implementation with the AWT library is also preserved, and placed in the
gui.awt package. It is possible to use another implementation - all the following
does not depend on a particular implementation, as long as the new features of
the facade are added.



208 Learn Design Patterns with Game Programming

The state of the Pacman game, presented in Chapter 2, is reorganized into two
parts: a first part with the containers, placed in the state package (here without
the WorldIterator class for clarity):

The second part with the elements is placed in the state.element package:



Chapter 4. Rules engine 209

4.2.1 Render a view of the game state

4.2.1.1 Initialize the world (Abstract Factory Pattern)

To render a state of the game, we must fill it with data that represents a level of
Pacman. In the examples in Chapter 3, a simple native array was used:

static final int[][] level = new int[][] {
{ 15,11,11,11,11,11,11,11,16 },{ 12,5,3,3,3,3,3,3,12 },
{ 12,3,15,11,11,11,16,3,12 },{ 14,3,13,11,11,11,14,3,13 },
{ 3,3,3,3,3,3,3,3,3 },{ 11,11,11,11,11,11,11,11,11 }

};

This array is very good for presenting the display, but does not have all the ad-
vantages of a state like the one designed in Chapter 2. The goal now is to use
it to initialize the world’s data. We have to build instances of the Element class
according to the different codes. For example, for code 15, we want to make an
instance of the Wall class with the WallTypeId.TOPLEFT type. A naive solution is to
program a large switch ... case. In this section, a richer approach is proposed,
based on the Abstract Factory Pattern.

Abstract Factory Pattern



210 Learn Design Patterns with Game Programming

• The Product interface defines the objects that you want to make. In the
illustration above, there are two implementations: ProductA and ProductB.

• The Creator interface is used to define classes that can build Product imple-
mentations. For example, the CreatorA class makes an instance of ProductA
with the create() method. We present the simplest case here: there are no
arguments to the create() methods. It is possible to propose methods of
creation with arguments.

• The Factory class is the Product factory. There are several ways to define
and implement it - here, the most common case is presented. The goal of this
factory is to be able to build a product based on an identifier. In this example,
the identifier is a string (String). Other types are possible, as well as any
form of setting or context that influence the nature of the created object. All
associations between an identifier and a product creator are stored in the
creators attribute. The class has the following methods:
– registerProduct() method: allows to define an association between an
identifier and a product to be manufactured;

– unregisterProduct() method: deletes an existing association;
– create() method: returns a new product based on an identifier. This
method must be consistent with that of the Creator interface.

Here is an example that illustrates the use of this factory:
Factory factory = new Factory();
factory.registerProduct("A", new CreatorA());
factory.registerProduct("B", new CreatorB());
factory.create("A").show();
factory.create("B").show();

Line 2 adds the association between the string “A” and the creation of ProductA.
Similarly, line 3 adds the association between the string “B” and the creation of
ProductB.
Line 4 makes a product using the string “A”, then invokes the show() method of
the newly created product. Line 5 does the same with string “B”.
Knowing that the show() method of the ProductA class displays Product A, and
that ProductB displays Product B, the following is displayed:
Product A
Product B

The first advantage of this pattern lies in the separation of the different features:
• The way a product is made is implemented in a specific class. For example,
the CreatorA class creates ProductA objects;

• The associations between the identifiers and the creators are chosen by the
user of the factory;

• A factory is interchangeable: a user can instantiate different factories, and
switch from one to another to modify the behavior of the application.


